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I. Phys.: Condens. Matter 5 (1993) 3163-3168. Printed in the UK 

z1 osciilations in the stopping powers of silicon and tungsten 
for low-velocity channelled heavy ions 

V Hari Kumar and A P Pathak 
School of Physics, University of Hyderabad, Hyderabad-SO0 134, India 

Received 28 August 1992, in final form 30 November 1992 

Abstract. A model of stopping for low-velocity heavy ions moving through an electron gas 
incorporaring a shell model charge density has been used to calculate the stopping powers of 
silicon and tungsten for ions channelled along silicon (110) and tungsten (100) single crystals, 
The energy loss of the heavy ions is attributed to the scanering of target electrons in the potential 
field of a moving projectile. So the stopping cross section is proportional to the momentum 
transfer (or transport) cross section. A comparison of the results with experimental data and 
earlier theoretical calculation shows good agreement. The present model is m a t  suited to 
projectile velocities greater than the Fermi velocity of target electrons. 

1. Introduction 

The stopping powers of solids for low-velocity channelled heavy ions exhibit a periodic 
(oscillatory) dependence on the charge z1 of the incident channelled ions. This is referred 
to as ZI oscillations [1,2]. In this velocity region (i.e. of the order of IJOZ;’~, where uo is 
the Bohr velocity), the nuclear stopping is small compared with electrunic stopping and is 
further suppressed because close collisions of incident ions with target atoms are completely 
avoided in channelling. The maxima of electronic stopping occur (irrespective of whether 
it is the channelling or the random case and irrespective of the specific target medium) at 
around zI = 6,20,38 and minima occur at around z1 = IO, 29,47 [Z]. In the channelling 
case the maximum-to-minimum ratio become large (as expected) and, when the velocity 
of the incoming projectile increases to above 3 au, the oscillations gradually damp out and 
ultimately disappear. The position dependence of stopping power in planar [3] and axial 
channels [4] has been calculated recently using shell charge densities and their planar and 
axial averages, showing good agreement with experimental results [3,4]. This motivated 
us to use the shell model axial charge density to calculate zt oscillations in the channelling 
stopping-power case. One of us had been involved in work on stopping-power oscillations 
earlier [l, 5,6]. In those papers, the effective charge density of target electrons was taken 
as the overlap of a moving projectile and an individual target atom or ion sited along the 
channel axis. Here we use the continuum average of atomic shell charge densities due to 
all the atoms along the relevant axis, also taking into account the appropriate geometry of 
the channel. This is in the spirit of the standard continuum model potential of channelling. 

In section 2 we give a brief introduction of the shell model axial charge density. In 
section 3 the theory of the stopping power is outlined and the results are discussed in the 
concluding section, section 4. 
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2. Shell model axial charge density 

Using one-term Slater orbitals with an optimized exponent given by Clementi and co- 
workers [7,8], the spherically symmetric electron density due to one atom at a distance R 
from the centre is given by 141 
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where oj is the occupation number of the jth shell, Rj is the corresponding radial 
wavefunction with normalization Nj given by 

where nj is the principal quantum number and c j  is the corresponding orbital exponent. 

approximation 141 and is given by 
The axial charge density due to one string is calculated using the continuum 

The local electron density at a distance r from the axis is 

where d is the interatomic spacing and Kn,-m the modified Bessel function. 
In the silicon case, a (1 IO) axial channel is nearly symmetric and we approximate that 

the six rows form a regular hexagon. In the (100) channel of tungsten, the four rows form a 
square. The charge density due to all the strings (six for silicon (1 10) and four for tungsten 
(100)) is calculated as a function of distance measured from the channel axis. 

3. Electronic stopping power 

The z, oscillations in the stopping power were theoretically explained by modifying the 
Firsov theory [I]  and, even though these modified theories predict the positions of the 
maxima and minima correctly, these theories fail to explain the large value of the maximum- 
to-minimum ratio of stopping power shown in experiments. Damping of the ZI oscillations 
at higher zl-values is another shortcoming of these theories. Our calculations are based on 
the semiclassical theory proposed by Briggs and Pathak [I]. In this theory, energy loss is 
attributed to the scattering of target electrons in the potential field of the moving projectile. 
At these low velocities, most of the stopping-power contribution comes from a transfer of 
momentum between the electrons of the ion and those of the target atom because of overlap 
of electronic clouds as the ion passes. This transfer of momentum can be considered to 
be affected by the elastic scattering of the target electrons through the charge cloud of the 
moving ion. This is similar to the diffusion of electrons through gases. 

The mean energy lost per unit path length by an ion with velocity U has been shown to 
be 

- dE/dx = nmvZQd (5 )  
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where m is the electron mass, n is the density of electrons and Qd is the momentum transfer 
cross section (transport cross section) and has been shown to he 

Qd=Zx !,,(8)(l -cos8)sinOd8 (6) 

where !,(e) is the elastic scattering intensity. The momentum transfer cross section can be 
written [9] as 

l 

where fik is the electron momentum in the centre-of-mass frame. The phase shift qI of the 
lth partial wave of the electron wavefunction can be calculated by numerically solving the 
radial part of the Schrodinger equation: 

(8) dZGr/dr2 + [k2 + U(r) - l(1+ I)/r2]Gr = 0 

where GI is the radial wavefunction corresponding to the lth partial wave and k is the 
electron wavenumber corresponding to the projectile velocity and U(r) = (2m/EZ)V(r) 
where V(r) represents interaction between target electron and projectile. 

Since the potential between the electron and projectile V(r) varies more rapidly than 
I / r ,  the asymptotic form of the radial wavefunction can  be written as 

(9) 

In the absence of an atomic field, equation (8) gives the solution whose asymptotic form 

G&) -sin& - i l x  + q t ) .  

Gl(r)  - sin(kr - i lx ) .  

is 

(10) 

The magnitude of the phase shift qt is determined by the competition between the attractive 
potential U(r) and the repulsive centrifugal potential 1( l+  I)/? and is computed by finding 
the shift in the nodes of solution (9) with respect to.the corresponding node of the solution 
(IO) for large r .  The atomic field U(r) in which the target electrons are scattered is taken 
to be the Molikre potential (in the Thomas-Fermi statistical model). The above model 
had been proposed and successfully used to explain not only the z1 oscillation and the zz 
variation [lo], but also the velocity dependence of these oscillations [ I l l .  Some alternative 
models [12-161 have been proposed in recent years. These are mostly very detailed density- 
functional theory calculations [17,18] for V(r) which also yield information on the effective 
charge density used in stopping-power formulae. The agreement with experimental results 
is approximately of the same order as our results. Moreover the velocity dependence of 
the z1 oscillation in these models has not yet been calculated to show at which projectile 
velocity the oscillations should vanish. Calculation of the transport cross section at the 
Fermi velocity as done in these later models is valid only for a degenerate electron gas in 
metals but certainly not for semiconductors such as Ge or Si or orbital target electrons such 
as 5d or 4d. Consequently we have made OUT calculations for projectile velocities as earlier 
[ l ]  because of reasonable agreement with experimental results and analytical applicability 
to more complicated situations involving defects. 

The charge density n was calculated [1,5] for individual target atoms along the 
particular channel. Here the charge density n in equation (5) is calculated as illustrated 
in section 2. The shell axial charge density (equation (4)) is curve fitted to a simple 
exponential function of the form pA(r) = aebr* + c, where parameters a ,  b and c are given 
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by a = 0.00433592, b = 0.4154959 and c = 0.0122899 for tungsten (100) and by 
a = 0.000154. b = 0.727563 IO and c = 0.01221266 for silicon (110). Atomic units 
are used here and also in what follows. The effective charge density n,fi is calculated by 
integrating over the space occupied by the projectile ion: 
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nee = - 2nrp+,(r)dr 

where Rs is the relevant space occupied by the moving ion and is taken as the radius of 
the maximum charge density [19] of the outermost shell of the projectile ion appropriate to 
the most probable charge state. For example projectiles such as rare gases are assumed to 
be neutral whereas those of alkali-metal ions ma, K, etc) are assumed to be singly charged 
because their outermost s electrons will certainly be stripped off during their motion in 
solids. In equation (1 I), r is measured from the centre of the channel. In the case of 
tungsten, we considered the conduction 6s electrons to contribute a uniform electron gas 
so that n6$ for tungsten is twice the atomic density. The axial charge density is calculated 
only for shell electrons (i.e. up to 5d electrons), i.e. 

n(r )  = n,ri(r) + n6s ( 1 2 4  

for the tungsten case and 

n ( r )  = nefi(r) (12b) 

for the silicon case. 
In atomic units, equation (5) changes to 

- dE/& = 4rrnQd (13) 

where Q d  = x,(l+ I) sin2(q - q,+t). 
The stopping power is calculated using equation (13) for various channelling projectile 

ions at a velocity of 0.75 au for both silicon and tungsten target atoms. This is shown in 
figure 1 (silicon (110)) and figure 2 (tungsten (100)), respectively. 

4. Conclusion 

We have calculated the stopping power of silicon (along the (110) axis) and tungsten 
(along the (100) axis) for low-velocity channelled heavy ions and compared the results 
with earlier theoretical calculations and experimental results. This is shown in figures 1 
and 2, respectively. The main aim of this work has been to keep the problem analytical 
as far as possible so that applications to the effects of defects and disorder [20,21] on this 
important quantity can be easily estimated. Of course, more detailed calculations using 
non-linear density-functional formalism [17, I81 have been performed which also yield el 

oscillations [13,14]. In these calculations, even after excessive computational efforts were 
made for potential and charge-density calculations, the effective electron density sampled 
in channelled particles is determined by equating the theoretical and experimental values 
of stopping for some specified ZI (e.g. for silicon (110) a z,-value of 5 was chosen to 
implement the fitting [13]). These calculations are ideally suited to a degenerate electron 
gas in the limit when the projectile velocity is negligibly small compared with the Fermi 
velocity so that the projectile velocity dependence of oscillations does not appear in the 
problem. Our calculations are valid for projectile velocities greater than the target electron 
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Figure 1. The stopping power of silicon for heavy ions channelled along the (I  10) axis at a 
projectile velocity of I .5 x IO8 cm s-': open star, experiment of Eisen [ZZ]: 0. calculation of 
Briggs and Palhak [5]; *.calculation using the shell model charge density. 
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Figure 2. Stopping power of tungsten for heavy ions channelled along the (100) direction nl 
a projectile velocity of 1.5 x IO8 cm s-': open star, experiment of Eriksson et al [23]; 0, 
calculation of Path& 161: *, calculalion using the shell model charge density. 
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velocities (i.e. when the Fermi velocity as well as the outer orbital electrons contribute to 
the stopping of well channelled projectiles). In fact all the experimental data available to 
date are in this velocity range (v > up). 

As discussed earlier [ 1 4 ,  we assumed elastic scattering of free (loosely bound) 
electrons from the well channelled projectiles. The actual shell electron density is averaged 
along the channel in an appropriate geometry, and the appropriate size effect of the projectile 
is included. There is no scaling or best fitting done as far as the final stopping power is 
concerned. The conduction electrons (such as 6s in tungsten) are assumed to contribute 
entirely as before [6]. Apparent disagreement for some values of 21 (e.g. 2, = 24) is 
actually related to a shift in the phase of the oscillations, with changes in the relative 
velocity 1111. The validity of the approximation of taking the projectile velocity as the 
relative velocity increases as U increases. 

Overall, our calculations, in spite of being simplistic, are reasonably accurate and useful. 
We feel that the data for heavy projectile ions (zI > 30) are very sparse and further 
experiments are needed to study these oscillations for heavier ions. Moreover, a systematic 
experimental study with respect to velocity dependence has never been undertaken, even 
though it is known that, at high velocities beyond the maximum in the stopping power 
versus velocity curve, the oscillations do not exist. Such interesting experiments are strongly 
suggested. 
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